主要功能
超轻手持式设计(含叶室和电池1.5Kg)方便野外测量植物的光合作用相关参数
可选择开路和闭路两种测量方法;可选择测量单叶和群体的光合作用
配合环境控制对叶室内的光、温、水、CO2进行控制,研究相关环境因子与光合、呼吸的关系
自然环境下进行光合和荧光参数同步测量
测量参数:测量单叶或群体的净光合速率或呼吸速率、蒸腾速率、气孔导度、胞间CO2浓度及进出叶室的空气CO2浓度、相对湿度、空气温度、叶面温度、光合有效辐射(PAR)等
环境控制模块能自动或手动控制叶室中的CO2和H2O浓度、光、温度
具有独特的快速连续光合测量功能(1秒钟测一组数据)
测量参数
直接测量PAR、CO2、温度、湿度、稳定流速参数、大气压力等参数
净光合速率、蒸腾速率、气孔导度、细胞间CO2浓度
与荧光附件连用可以测量荧光参数
与土壤呼吸室连接测量土壤呼吸作用
应用领域
手持式光合作用测量系统CI-340广泛应用于植物生理学、生态学、农学、林学、园艺等植物相关学科研究,特别适合于在苛刻环境下(如林木冠层、山地环境等)的快速测量;同样可以应用储藏加工果品、种子的呼吸、微生物的呼吸、昆虫呼吸灯相关CO2变化的研究领域。
主要技术参数
主机参数
主机:包括了红外CO2分析器、湿度传感器、气泵、电子流量计、显示器和键盘
显示器:LCD 40×6字符(320×64像素)
数据存贮:4MB内存,存储大约160万个数据
数据传输:USB
流速: 100-1000mL/min
工作温度:0~45℃
工作湿度:5~95%RH(水汽未凝结)
供电:7.2V4400mA时锂电池,可连续使用4-6小时
重量:1.5kg(含叶室和锂电池)
体积:44.0×5.5×5cm
CO2传感器技术参数
分析器:低功耗非扩散时红外分析器
斩波频率:1Hz
响应时间:1秒
使用寿命:5000小时
测量范围:0~2000ppm(标准),0~3000ppm(可选)
分辨率:0.1ppm
重复性:0.1ppm(短期)
精度:<2%
分析器腔室尺寸:100mm×10.5mm(直径)
湿度传感器技术参数
类型:湿敏电容
稳定性:精确稳定的测量
测量范围:0~2100%
分辨率:0.1%
精度:在10%RH时,精确度在±2%;在90%时精确度为±3.5 %
PAR传感器技术参数
类型:使用带余玄校正滤光片的GaAsP光电池
测量范围:0~2500μmol/m-2/s-1
响应光谱:400~700nm
精度:±5μmol/m-2/s-1(全范围内)
气温传感器技术参数
类型:热电偶
测量范围:-15~50℃
精度:±0.1℃
叶温传感器技术参数
类型:红外非接触式
测量范围:-10~50℃
精度:±0.3℃
选购指南
基本配置
主机、叶室、PAR探头、红外叶温计、碱石灰管、硅胶管、可充电锂电池、电池充电器、USB数据线缆、说明书、便携式仪器箱
可选附件
叶绿素荧光部件Junior-PAM 可测光响应曲线和快速光曲线 | 技术参数 测量参数:Fo、Fm、Fv/Fm、Fm’、Fo’、ΔF/Fm’、qP、qL, qN、NPQ 、Y(NPQ)和rETR 等 配备有测量、光化、饱和脉冲光、远红外各种光源
| |
光强控制模块CI-301LA 具有手动和自动控制方式 控制叶室内叶片接受的光照强度 测量不同光强下的光合作用 测量光合作用随光强变化的响应曲线 | 技术参数 类型:红蓝LED光源 红光波峰:25℃时660 nm 10 nm 蓝光波峰:25℃时470 nm 10 nm 光强范围:0~2500 mol m-2 s-1 辐照面积:80 x 40 mm 尺寸:64 x 100 x 160 mm | |
温度控制模块CI-510CS 测量不同温度对植物光合作用的影响 | 技术参数 类型:热电制冷器 范围:环境温度25℃ 制冷头尺寸:55 x 43 x14 mm 尺寸:64 x 100 x 160 mm | |
荧光控制模块CI-510CF 与CI-340光合仪连用 可测量暗适应下、光下的荧光参数 同步测量光合-荧光参数 可以单独进行测量相关荧光参数 | 技术参数 测量光:0.25 m 饱和光:3000 m 频率:8-80Hz 光纤:光导纤维 尺寸:64 x 100 x 160 mm | |
前述3种附件可以整合在一起, 如图所示 CO2/H2O控制模块CI-301AD 温度控制模块CI-510CS供电 | 技术参数 电池包:CI-340BP 电池:7.2V可充电锂电 电池重量:215g 供电时间:4-10h(视使用模块) CI-340BP尺寸:200×128×160mm |
叶室类型
叶室类型 | 型号 | 窗口尺寸 | 深度 | 适用对象 |
开路叶室 | ||||
方形叶室 | CI-301LC-1 | 25×25 mm | 10 mm | 6.25cm2宽大叶片 |
宽叶室 | CI-301LC-2 | 55×20 mm | 10 mm | 11 cm2宽大叶片 |
窄叶室 | CI-301LC-3 | 65×10 mm | 10 mm | 6.5 cm2窄长叶片 |
小柱状叶室 | CI-301LC-4 | 25×90 mm | 25 mm | 22.5 cm2幼苗、簇状叶/针叶、苔藓等 |
大柱状叶室 | CI-301LC-5 | 50×70 mm | 50 mm | 35 cm2大幼苗、拟南芥、针叶、苔藓、昆虫等 |
仙人掌叶室 | CI-301LC-11 | 仙人掌或肉质植物 | ||
闭路叶室 | ||||
1/4升叶室 | CI-301LC-7 | 104×33 mm | 73 mm | 0.2505L枝条、小型植株(单株)、幼苗等 |
1/2升叶室 | CI-301LC-8 | 89×66 mm | 86 mm | 0.5052L枝条、小型植株(单株)、幼苗等 |
1升叶室 | CI-301LC-9 | 112×90 mm | 99 mm | 1.0090L枝条、小型植株(多株)、幼苗等 |
4升叶室 | CI-301LC-10 | 180×130 mm | 170 mm | 3.9780L群体测量 |
土壤呼吸室 | CI-301SR | 直径100 mm | 100 mm | 面积73.4cm2 ,呼吸室0.634 L;10mm深0.580 L |
群体叶室接口 | CI-301CC | 直径76 mm | 连接自制群体光合室 |
产地:美国CID
参考文献
原始数据来源:Google Scholar
1.Zhiwei Zheng, Yangren Wang, Shaosheng Wang, Baoyong Zhao(2016) Research on tomato water requirement with drip irrigation under plastic mulch in greenhouse,2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics) 10.1109/Agro-Geoinformatics.2016.7577646
2.Zhiwei Zheng, Yangren Wang(2016),Research on the relationship among the growth period environmental factors of tomato under the condition of mulched drip irrigation in greenhouse, 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 10.1109/Agro-Geoinformatics.2016.7577648
3.Leticia Larchera, Maria Regina Torres Boegerb, Leonel da Silveira Lobo O'Reilly Sternbergc(2016)Gas exchange and isotopic signature of mangrove species in Southern Brazil,Aquatic Botany 10.1016/j.aquabot.2016.06.001
4.Arjun Adhikaria, Joseph D. Whitea(2016),Climate change impacts on regenerating shrubland productivity, Ecological Modelling, 10.1016/j.ecolmodel.2016.07.003
5.Sadasivan Nair Raji, Geetha Nair Aparna Changatharayil N. Mohanan, Narayanan Subhash,((2016))Proximal Remote Sensing of Herbicide and Drought Stress in Field Grown Colocasia and Sweet Potato Plants by Sunlight-Induced Chlorophyll Fluorescence Imaging, 10.1007/s12524-016-0612-3
6.Zhenhua Yu, Yansheng Li, Jian Jin, Xiaobing Liu & Guanghua Wang(2016) Carbon flow in the plant-soil-microbe continuum at different growth stages of maize grown in a Mollisol, 10.1080/03650340.2016.1211788
7.M. Drapikowskaa, P. Drapikowskib, K. Borowiaka, F. Hayesc, H. Harmensc, T. Dziewiątkaa, K. Byczkowskaa(2016) Application of novel image base estimation of invisible leaf injuries in relation to morphological and photosynthetic changes of Phaseolus vulgaris L. exposed to tropospheric ozone, 10.1016/j.apr.2016.06.008
8.Juan F Ovalle , Eduardo C Arellano, Juan A Oliet, Pablo Becerra(2016) Rosanna Ginocchio, Linking nursery nutritional status and water availability post-planting under intense summer drought: the case of a South American Mediterranean tree species, 10.3832/ifor1905-009
9.Imran Khana, Muhammad Iqbala, Muhammad Yasin Ashrafb, Muhammad Arslan Ashrafa, Shafaqat Alic(2016) Organic chelants-mediated enhanced lead (Pb) uptake and accumulation is associated with higher activity of enzymatic antioxidants in spinach (Spinacea oleracea L.), 10.1016/j.jhazmat.2016.06.007
10.Tao Wei, Kejun Deng, Dongqing Liu, Yonghong Gao, Yu Liu, Meiling Yang, Lipeng Zhang, Xuelian Zheng, Chunguo Wang, Wenqin Song, Chengbin Chen, and Yong Zhang(2016) Ectopic expression of DREB transcription factor, AtDREB1A, confers tolerance to drought in transgenic Salvia miltiorrhiza, Plant Cell Physiology10.1093/pcp/pcw084
11.Xinping Chen, Hongyu Yuan, Rongzhi Chen, Lili Zhu, Bo Du, Qingmei Weng and Guangcun He(2016)Isolation and Characterization of Triacontanol-Regulated Genes in Rice (Oryza sativa L.): Possible Role of Triacontanol as a Plant Growth Stimulator,Plant & Cell Physiology 10.1093/pcp/pcf100
12.Muhammad Adrees, Muhammad Ibrahim, Aamir Mehmood Shah, Farhat Abbas, Farhan Saleem, Muhammad Rizwan, Saadia Hina, Fariha Jabeen, Shafaqat Ali(2016)Gaseous pollutants from brick kiln industry decreased the growth, photosynthesis, and yield of wheat (Triticum aestivum L.),Environmental Monitoring and Assessment 10.1007/s10661-016-5273-8
13.Carlos A. Madera-Parra(2016) Treatment of landfill leachate by polyculture constructed wetlands planted with native plants, Ingeniería y Competitividad
14.Raji, S., Subhash, N., Ravi, V., Saravanan, R., Mohanan, C., Nita, S., Kumar, T.(2016) Detection and Classification of Mosaic Virus Disease in Cassava Plants by Proximal Sensing of Photochemical Reflectance Index, Journal of the Indian Society of Remote Sensing 10.1007/s12524-016-0565-6
15.Gao, X., Zhao, S., Xu, Q., Xiao, J.(2016) Transcriptome responses of grafted Citrus sinensis plants to inoculation with the arbuscular mycorrhizal fungus Glomus versiforme, Trees 10.1007/s00468-015-1345-6
16.Per, T., Khan, S., Asgher, M., Bano, B., Khan, N.(2016) Photosynthetic and growth responses of two mustard cultivars differing in phytocystatin activity under cadmium stress, Photosynthetica 10.1007/s11099-016-0205-y
17.Loka, D., Oosterhuis, D.(2016) Increased night temperatures during cotton's early reproductive stage affect leaf physiology and flower bud carbohydrate content decreasing flower bud retention, Journal of Agronomy and Crop Science 10.1111/jac.12170
18.Zhou, B., Sun, J., Liu, S., Jin, W., Zhang, Q., Wei, Q.(2016) Dwarfing apple rootstock responses to elevated temperatures: a study on plant physiological features, and transcription level of related genes, China Agri Science
19.Das, A., Eldaka, M., Paudel, B., Kim, D., Hemmati, H., Basu, C., Rohila, J.(2016) Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean
20.Ovalle, J., Arellano, E., Ginocchio, R., Becerra, P.(2016) Fertilizer location modifies root zone salinity, root morphology, and water-stress resistance of tree seedlings according to the watering regime in a dryland reforestation, Journal of Plant Nutrition and Soil Science 10.1002/jpln.201500181
21.Li, Y, Wang, Z., Zhang, J., Wenhao, L.(2016) Effect of Liquid Mulch on the Transpiration Rate and Water Use Efficiency of Drip-irrigated Cotton, International Journal of U and E Service, Science and Technology 10.14257/ijunesst.2016.9.1.12